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The multi-commodity spatial market equilibrium linear programming
model can be written as follows:
(36)  max I[Z ew, Du, - Teu, Zus) - IRty X

This is subject to:

61 SYuDu<3IXa [7f)  foralljand k
68 X< 30uZ [75]  foralliand k
(G0 3Du<! {uJ  foralliand k
(5 3Z.s<1 lo]  foralliand k

‘The Lagrange multipliers for each constraint set are shown in brackets.

The Multi-Commodity Spatial Equilibrium
Model as a Primal-Dual Problem

The mathematical programming model in the previous section will not yield
a competitive equilibrium solution. An examination of the Kuhn-Tucker
optimality conditions shows that regional demand and supply prices are
equated to marginal revenues and the first derivative of total variable costs,
respectively. Thus, it is necessary to construct a model which imposes all of the
necessary conditions for equilibrium. This is done by specifying a primal-dual
problem wherein the dual objective function is subtracted from the primal
objective function and the constraints from the dual problem are incorporated
into the primal constraint set.* The dual for the linear programming model
from the previous section is stated as follows:

(39)  min 33u, + 330,

This is subject to:

40)  YumR-u, = E, for all i, k, s
@) Qumh - oy = -Au, for all i, k, s
42) -+ mi=-, forall k, i

It can be shown that the shadow prices 75 and 3 are equivalent to the
demand and supply prices P4 and P}, respectively.

6 This approsch has been used by Plessner and Heady, and by Yaron and Heady. The basic assumption
underlying this formulation is that the imputation of rents 1o the factors of production is exhaustive under
competitive equilibrium.
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Without loss of generality, assume that for S variables D, (s=1,...,S) only
one of these variables, denoted as Dy, is non-zero. Also assume that for M
variables A,, (m = 1,...,M) only one of these variables, denoted as A, is
non-zero. Equation (A7) implies that D} is equal to unity, while equation
(A8) implies that ZJ, is equal to unity. Then equation (A13) can be rewritten
as:

(Ald) W= 34X, =u+ Y,

Also equations (A2) and (A3) can be written as follows:

(A15) Wi-nYi=u

(A1) -ha+0,0n=7,

Equations (A14) to (A16) can be combined to yield the following result:
(A7) 7= 1/ Y2008 + 34, X,)

The right hand side of equation (A17) can be interpreted as the marginal cost
of providing the good o region  from all different supply sources. Hence, , is
a marginal-cost price. These results also imply that u, is a measure of
consumers' surplus for region j while Y, is a measure of producers’ surplus for
region j.

Thus, the single commodity spatial equilibrium linear programming model
satisfies the pricing conditions as well as the quantity conditions required for a
competitive spatial cquilibrium solution to be obtained.
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Single- and Multi-Commodity Models of
Spatial Equilibrium in a Linear
Programming Framework

Keith Willett*

This paper uses linear programming 1o consiruct a set of single- and multi-commodity
models of spatial equilibrium within a competitive market. The models are based on grid
linearization techniques which appear in the agricultural economics literature. First, a
single-commodity spatial equilibrium model is constructed and is shown to satisfy both the
pricing and quantity conditions required 1o obtain a spatial competitive market equilibrium
solution. Nex. the model is extended to include multiple commodities. This extension takes
1wo forms. The first form states the objective function as the sum of consumers' and producers'
surplus. and requires the assumption that the cross-price elsticity coeficients of supply and
demand are symmetric. Finally, a model with asymmetric cross-price elasticities is stated as a
primal-dual problem in which the constrainis are the conditions necessary for a spatial
competitive market equilibrium.

|Keywords: Linear programming, spatial Mots-clef: la programmation linéaire,

equilibrium] I'équilibre spatial]

Cet exposé présente un ensemble de modéles d'équilibre spatial qui appartiennent & des
denrées individuelles et multiples au marché de concours et qui sont construits dans le cadre de
la programmation linéaire, La construction des modéles de programmation linéaire est fondée
sur des techniques du quadrilage linéaire qui se montrent dans les revues d'économie rurale.
D'abord, un modéle déquilibre spatial d'une denrée individuelle est construit et on fait preuve
que ce modéle remplit les conditions de prix et de quantité qui sont exigées pour qu'on peut se
procurer des résultats. Ensuite le modéle de la denrée individuelle est étendu pour comprendre
des denrées multiles. L'auteur présente deux formes du modéle étendu. D'abord, un modéle
est développé qui affirme la fonction économique sous la forme de la somme du surplus du
producteur et celui du consommateur. Cette conformation exige que les élasticités prix-croisées
e 'offre et de la demande soient symétrigues. Enfin, un modéle dont les élasticités sont
asymétriques est exprimé en fonction d'un probléme primal-dual, un probléme o les
contraintes sont les conditions nécéssaires pour un équilibre spatial au marché de concours.

Mathematical programming methods to solve competitive market equilibria
problems have appeared extensively throughout the agricultural economics
literature. The basic methodology was provided by Samuelson, who used the
sum of consumers’ and producers’ surplus as the model maximand. His

*Depariment of Economics, Oklahoma State Universty
© Copyright 1983, Canadian Agricultural Economics Society
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49)  QuPis - 0w = —Cuy for all i, k, s

(50) -PR+Pi= -ty for all k, i

(1) EDu-FPRenPR<1-Seu for all , k
ek

(52)  3Z - ; P8y Py<1- 8 for all i, k
Ak

Summary

Beginning with Samuelson’s work, mathematical programming methods to
solve spatial competitive market equilibria problems have appeared exten-
sively throughout the agricultural economics literature. The vast majority of
these mathematical programming models have been developed in terms of a
quadratic programming framework. Duloy and Norton have shown how a
quadratic objective function can be approximated as a linear objective
function through the use of grid linearization techniques.

A set of spatial competitive market equilibrium models for single and
multiple commodities in a linear programming framework were presented in
this paper. The lincarization techniques used by Duloy and Norton provided a
basis for constructing the linear programming whole. First, a single-commodi-
ty spatial equilibrium model was constructed and shown to satisfy both the
pricing and quantity conditions required for a competitive spatial equilibrium
solution to be obtained.

The single-commodity model was extended to include multiple commodi-
ties. This extension took two forms. First, if the model objective function is
stated in the form of Samuelson’s “net social payoff”” function, the commodity
demand and supply functions must be assumed to be integrable. This
assumption is consistent with the neoclassical assumptions of the theory of
production, but creates a number of problems on the demand side. It is implied
here that the demand cross-price effects will be equal across all commodity
prices. However, this will be true only for very restrictive cases.

The second form of the multiple commodity model was designed to
circumvent the integrability assumption. This was accomplished by specifying
a primal-dual problem in which the constraints are the necessary conditions
for a spatial competitive market equilibria.

Implementation of the models set out in this paper require a set of
numerical initial conditions. However, these do not necessarily need to be
market-clearing conditions.

[Received July, 1982; Revisions accepted February, 1983]
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The implications of the symmetry assumption have been pointed out by
Zusman. The neoclassical assumptions of the theory of production yield the
symmetry condition, so the problem is not as serious in the case of the supply
functions. However, such is not the case for demand functions. The price
derivative of an individual demand function (of which the mathematical
programming functions are aggregates) consists of a symmetric substitution
term and an income effect term. Thus the cross-price effects need not be
symmetric. The assumption of integrability would be satisfied if the income
elasticity of demand of all relevant goods is zero. The assumption could also be
approximately satisfied if the income effect is small relative to the substitution
term. This would be true if the goods are closely related in demand, have low
income elasticities, and constitute a minor share of the consumers’ expendi-
tures. The integrability condition is not met, not even approximately, in any
other cases.

The asymmetry problem is handled by respecifying the primal objective
function as a net revenue function. The new objective function is now written
as:

(25) R =3Fl@u - Thacyalya = (a + Enagw) qu) - 2L, X0

The term (a, - Ebw ya)yu represents total expenditures for commodity k in
region i. The term (v, + ,Zﬂ.u gw)qu is the total cost of procuring good k in
region i.

The terms in the objective function representing expenditures on all goods
and the cost of procuring the goods in all regions must be linearized before
setting up the linear programming model. Let a function expressing
expenditures for commodity k in region i be defined as follows:

29 Ea= (@ - Tou s

For each good k in each region i, the initial demand curve defined in the
own-price/quantity space must pass through an initial point (P2, 7,) in the
same manner as illustrated in Figure | for the single-commodity case. Then the
relevant range of the demand curve is partitioned into segments s = I, ...,S.
For each segment, the expenditures associated with the corresponding point on
the demand curve can be written as:

@7 ew = (@ - T buYu - bu¥u)Yas

k

The y,'s for all h # k are the observed initital quantities demanded for all such
goods in each region i. These values help determine the initial position of the
demand curve for good k in own-price and quantity space. At each segment
endpoint, the parameters Y, and e, are defined to represent the cumulative

S Further comments on the symmeiry of supply functions may be found in Zusman (p. 55)
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(19)  Pi=au-Zbuya for all i, k, h

(20)  Pi=vi+Znuqa for all i, k, h

where P = demand price for k* good in the i* region

P}, = supply price for k* good in the i* region

Y& = quantity demanded of k* good in region i

ga = quantity supplied of k™ good in region i

b = slope coefficient relating the demand price of the k™
commodity to the quantity demanded of the A* commodity
in the i region (b > 0 for k = h; by, 3 0 for k % h)

nu = slope coefficient relating the supply price of the kw
commodity to the quantity supplied of the & commodity in
the i region (ny, > 0 for k = h; ny, 30 for k # h)

a, = demand function intercept, good k in region i (a, > 0)

va = supply function intercept, good & in region i (v, % 0)

The value of interregional transfer costs and trade flows is defined as fol-
lows:

@) TC=33FtuXa

where f,, = transfer cost between the i* producing region and the j*
consuming region for the k" commodity
X = trade flow of good k between regions i and j

Equations (19) to (21) can be combined to form an objective function which
is again a quadratic expression. This objective function is:

(@) R= 3@ - hEbwya) a - O + KE i )

I ki

The no-excess demand possibility of excess supply conditions are stated
respectively as follows:

(23) < EX for all i, j and k
Q4 IXp<qa for all i and k
i

The mathematical programming model then consists of maximizing
equation (22) subject to equations (23) and (24).

In order to solve the multi-commodity model in its present form, it is
necessary to assume integrability of product demand and supply functions.
This assumption ensures that a unique line integral can be found for the
objective function. Integrability refers to conditions in which the matrix of first
derivatives of the demand and supply functions must be symmetric. This
means that the cross-price effects are equal across all commodity pairs.
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The explicit introduction of prices into the primal requires that the
own-price-responsive market demand curve be shifted (additively) or rotated
(multiplicatively shifted) endogenously as other prices change. For initial price
levels, entering equations (28) and (29) into the linear programming model
guarantees that the quantities y, and E, lie along the given demand function.
For new comparative statics equilibria, it is desirable to have the y, and E,
defined so that they are consistent with the rotated demand function (a
multiplicative shift is used here). This is accomplished by rewriting the convex
combination constraint for the demand curve as follows:”

@)  SDu-IPRenPisi-Tey
&

where e, = demand price elasticity of good k with respect to demand
price h, region i
P3 = reciprocal of the initial demand price of good 4 in region i

The convex combination constraints for the supply functions in each region
can be modified in an analogous way. These can be stated as:
(44)  3Z, -3 PusuPi<1-38u
N
where g,, = demand price elasticity of good k with respect to demand
price h, region i
P, = reciprocal of the initial demand price of good  in region i
The linear programming model® that will generate a spatial competitive
market equilibrium for the multi-commodity case is written as follows:

(45 EF(Zew D - Few Zul - It Xp - TEla + )

This is subject to:

(46) IV Dy SZX, for all j, k
@) EXp < 20uZu for all i, k
48)  Yu, PR-uy> ey for all i, k, s

7 The modified version of the convex combination constraint as shown by equation (43)is derived as follows.
First rewrite the convex combination const

1D, < L+ ¥ em(BPR/P,)

where P,y is the initial demand price of good h in region i
Let: APR = (PR - PR) and P§ = 1/F}

Then expression (43) can be obtained by substituting these relationships into the convex combination
constraint as written above.

8 The general programming tableau is available, on request, from the authors.
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development of this result was in the context of spatial equilibrium models in
which the market supply and demand schedules are given exogenously.
Takayama and Judge extended the approach to multi-market equilibria using
quadratic programming and have become the standard reference for such ex-
tensions.

Quadratic programming models are potentially useful for a wide range of
problems. Martin recently pointed out that one limitation to wider adoption is
the difficulty many people have in comprehending Takayama and Judge's
work. Major problems include the complex notation used and the large
number of mathematical proofs included in the book. Martin facilitates a more
complete understanding of these models by making use of a more straightfor-
ward programming format to present a simple expositian of spatial quadratic
models.

Litzenberg, McCarl and Polito have pointed out that, in applications.
relatively small quadratic programming problems have been solved. They
have also noted that the lack of suitable large-scale quadratic programming
algorithms has motivated the development of approximations or alternative
solution procedures.! Duloy and Norton, for example, have shown how the
quadratic objective function can be approximated as a linear objective
function with the use of separable programming. This approach offers the
advantage of allowing use of the simplex method for obtaining solutions.
thereby expanding the size and scope of problems which can be considered.

The purpose of this paper is to present a simplified exposition of single- and
multi-commodity competitive spatial equilibrium models in a linear program-
ming framework. The linearization techniques used by Duloy and Norton will
be employed in the development of the linear programming models. The
traditional expositions of quadratic programming models (see, for example,
Takayama and Judge, and Martin) are done first with quantities and then
prices in the decision domain. The models developed in this paper will be
based on a quantity formation only.

A Single Commodity Model

The spatial equilibrium problem is restated here for convenience. Two or
more regions with known supply and demand functions produce and consume
a homogenous product. The regions are separated, but not isolated, by known
transfer costs. Given this information, the problem is to determine the
equilibrium levels of production, consumption, and prices in each region and
the equilibrium trade flows between regions.

An optimal solution to this problem is characterized by three equilibrium
conditions. First, prices will differ between any two regions by an amount that

1 McCarl and Tiu have also noted that software for large-scale quadratic programming problems is not
readily available.
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quantity demanded and the cumulative expenditures for good k in region i,
respectively. The quantity demanded and the value of expenditures for each
good in each region can be expressed as a weighted combination of the
parameters Y, and e;, respectively:

(28)  Ya=Z2YuDy

(29 Ey=Zey Dy

The D,,’s are non-negative interpolation weights and are defined such that
(30) Dy <1

A similar procedure is followed for linearizing the expression representing
the cost of obtaining product k from producing region i Let this cost be
defined by the following expression:

Gl Ca= 0w+ Inuga) gu

For each good produced in each region, the initial supply curve defined in the
own-price/quantity space must pass through an initial point (P}, 7,) in the
same manner as illustrated in Figure 2 for the single commodity case. A
relevant range of the supply curve is next defined and partitioned into
segments r = 1, ... ,R. For each segment, the cost of procuring the good
associated with the corresponding point on the supply curve can be written
as:

G2) e = e+ T maagin + M Qi) Qe
A

The G for all h % k are the observed initial quantities supplicd for all such
goods in each region i. The values help determine the initial position of the
supply curve for good k in own-price and quantity space. At each segment
endpoint, the parameters g,, and a,, are defined to represent the cumulative
quantity supplied and the cumulative procurement cost for each good k in
region i, respectively. The quantity supplied and the value of costs for each
good in each region can be expressed as a weighted combination of the
parameters Q,, and a,, respectively:

33 qu=2QuZu

(34 Cu=ZcwZu

The Z,,'s are non-negative interpolation weights and are defined such that
(35 3Z,s1

The constraint set which defines the feasible space for the multi-commodity
spatial equilibrium problem is similar to that for the single problem.
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point on the demand curve, each segment on the demand curve will have a
corresponding segment on the function for the area under the demand curve.
For segment s on the demand curve, let

@®) wa = (aY, - b, Y})

Then for each segment endpoint w, is defined to represent the cumulative
value of the area under the demand curve for the commodity in any region.
The quantity demanded and the value of the area under the demand curve for
a2 commodity in any region can be expressed as a weighted combination of
7. and w, respectively:

®  n=3YD,

(10 W,=3w,D,

The D,’s are non-negative interpolation weight variables and are defined such
that

iy 3b,=1

The role of equation (11) can be explained in the following manner. First,
recall that the points y, are fixed grid points and equation (10) is used to
approximate the area under the demand curve. (The area under the demand
curve is expressed as a quadratic function.) The approximation procedure is
based on selecting the grid points w, close enough together to provide a
satisfactory approximation. The variables D,, as expressed by equation (11),
then provide a convex combination of the parameters w,. That is, equation
(11) enables an interpolation between adjacent values of the w; and thereby
provides an approximation for the area under the demand curve, which is
expressed as a quadratic function.’ Since the function W, is concave, no more
than two adjacent segments on each demand curve will enter the optimal basis
at positive levels.

A similar type of procedure is followed for linearizing the second expression
in equation (4), which represents the area under the supply curve. A function
representing the area under the supply curve is defined as

(12) H, = (viq; + %n,q})

Next, the relevant range of the supply curve is defined and partitioned into
segments m = |,...,M. For segment k on the supply curve let

(13) b= Qi + 1, Q)

3 A more detailed discussion of the convex combination constraint can be found in Duloy and Norton. An
additional reference is Miller.
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is less than or equal to the transfer costs. For the second condition it is assumed
that the quantity of a good which is produced and consumed in the same
region is viewed as a trade flow to that region itself. Then demand in each
region equals the sum of trade flows to that region. Finally, there is an implied
condition that equilibrium prices and quantities must lie on the supply and
demand functions.

The mathematical programming model that provides a competitive
equilibrium solution to this problem is driven by an objective function which
Samuelson called the “net social payoff.” This objective function is defined as
the sum of consumers' plus producers’ surplus less the total transportation cost
for all possible trade flows. Assume that there are n producing and consuming

regions (i = ,...,). Each region has known demand and supply functions with
prices as the dependent variables:

W p=a-by for all i
@ F=v, +ng, for all i

demand price in region i
= Supply price in region i
Vi demand quantity in region i
q; = supply quantity in region i
a; = demand function intercept, region i (a, > 0)
demand function slope coefficient, region i (b, > 0)
upply function intercept, region i (v, 3 0)
n; = supply function slope coefficient, region i (n, > 0)
i and j are indices denoting regions

Define the unit transportation cost? between each pair of regions as 1, and
the trade flow between any pair of regions as X;. The total transportation cost
for all possible trade flows can be expressed as
®  TC=3IuX,

Equations (1) to (3) can be combined to form an objective function which is
a quadratic expression:

@ RO, giv Xp) = @y, - 8b,y?) - (vig, + Yonigh) - 231, X,

The search for optimum demands, product levels and prices is subject to a
constraint set which consists of two types of quantity conditions that
characterize a competitive spatial market equilibrium solution. The first
condition states that demand in any region is less than or equal to trade flows
to that region. This is written as follows:

2 Unit wansportation cost between each pair of regions is assumed 10 be constant to mainiain consisiency
between the expositions by Martin and by Takaysma and Judge. These costs could also be stated as
quadratic functions. .





index-4_1.png
208
6 y<IX, for all j

The second condition states that trade flows from a region must be less than or
equal to production in that region. This is expressed as follows:

©® IXs<q for all i

A solution for the mathematical programming model which meets these
conditions can be ensured by imposing them as constraints. Thus, constraint
set (5) eliminates the possibility of excess demand in the optimal solution while
constraint set (6) allows for the possibility of excess supply.

The mathematical programming model which yields a competitive spatial
market equilibrium solution consists of maximizing equation (4) subject to the
constraints (5) and (6).

The Linear Programming Formulation

The quadratic expressions in the objective function equation (4) must be
linearized before the mathematical programming model can be converted to a
linear programming form. These expressions will be linearized through the use
of grid linearization techniques as done by Duloy and Norton. The expression
for the area under the demand curve is linearized first, followed by the area
under the supply curve.

The grid linearization technique begins with the demand curve being
segmented into grids. This requires a prior specification of a relevant range of
values on the demand curve and the use of variable interpolation weights on
the grid points. The interpolation weights become variables in the model and
their values are jointly constrained by a set of convex combination constraints.
The principal advantage of this technique is that the demand functions can be
approximated as closely as desired without requiring additional constraints in
the model beyond the convex combination constraint. The role of these
constraints is explained more fully below.

For a commodity in any region, the demand curve defined in the
own-price/quantity space must pass through the point (#7, 7)) as illustrated in
Figure 1. The relevant range of the demand curve is defined and is truncated at
points a and b. Then this range is partitioned into segments s = 1,....S. For each
segment cndpoint, the parameter y, is defined to represent the cumulative
quantity of the commodity demanded in any region.

As shown in the objective function, equation (4), a function representing the
area under the demand curve is defined as:

™ W, = (a,y, - %b,y?)

Equation (7) is shown graphically in the lower portion of Figure 1. Since each
point on the graph for the function defined by equation (7) corresponds to a
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Then for each segment endpoint, Q,, and h,, are defined to represent the
cumulative quantity of the commodity supplied and the cumulative value of
the area under the supply curve, respectively. These grid linearizations are
shown graphically in Figure 2. The quantity supplied and the value of the arca
under the supply curve for a commodity in a region can be expressed as a
weighted combination of Q,, and h,, respectively:

(14 4= 30nZm
(15) H, = E}l....Z,,n

The Z,,'s are non-negative interpolation weight variables and are defined such
that

(16) gZ.., =1

Since the function H, is convex and enters the objective function negatively, no-
more than two adjacent segments on the supply curve will enter the optimal
basis at positive levels.*

The mathematical programming model can now be written in linear
programming form:

@ max Ry Z, X) = E13W, Dy - EhnZa) - 31, X,

‘This is subject to:

an D <X, [m]
(18) X, < 20nZim fo}
an  go.<1 (1)
16)  3Zms<| 191

The Lagrange multipliers for each constraint set are shown in brackets. The
optimality properties of the single commodity spatial equilibrium model are
investigated in Appendix A.

An example of the single commodity model is presented in Table 1.

Quadratic Programming Form of
Multi-Commeodity Models

The model developed in the previous section referred to a single
commodity. This can easily be extended to a multi-commodity model. First,
define linear demand and supply functions as follows:

4 The function of equation (16) i similar (o that of equation (1)
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Appendix A

The linear programming model as previously stated ensures that the spatial
equilibrium quantity conditions are met, but it is not obvious that the pricing
conditions are met. To determine whether these conditions are met, the
model’s optimality properties can be investigated by forming the Lagrange
function:

(A £= 35w, D, - ThaZ) - 324X, - £ [2Y, D, - £X,]

-Zo l/iX,, - 20mZn] - 24 [2D, - 1] - 2V[EZ, - 1]
The endogenous variables in this model are the interpolation weight variables

D, and Z,, the interregional trade flows X, and the Lagrange multipliers. The
Kuhn-Tucker conditions are as follows:

(A2)
(A3)  ~hm+0,0im-Y,<0 and Z,, 20

- mY,-u<0 and D, = 0
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(Ad) m-0,-1,<0 and X, >0
(AS)  £Y,D,-3X,<0 and 7, =0
(A6) IZX, - EQ‘,,Z,,,, <0 and o, =0
(A7) 3D,-1<0 and u, =0
(A8) ;zz,m 10 and 7,20

Assume that production and demand in region i are both positive. Also
assume that excess supply and excess demand in region i are zero. Then the
excess supply constraint given by equation (A6) will hold as a strict equality, as
will the excess demand constraint given by equation (AS). The Lagrange
multipliers o, and =, from the excess supply and demand constraints,
respectively, will be positive. The Lagrange multiplier o, may be interpreted as
an optimal regional supply price and 7, as an optimal regional demand

rice.
? Let the amount of the commodity shipped from region i to region j be
positive. Then equation (Ad) implies that

(A9) m=o+1,

The term ¢, is assumed to reflect the opportunity cost of shipping a unit of the
commodity from region i to region j. Thus, equation (A9) states that the
demand price in region j will differ from the supply price of the commodity in
region i by an amount equal to the transportation cost.

A second issue with respect to the demand price , is whether it can be
interpreted as a marginal-cost price. This property can be investigated by
making use of the saddlepoint property for optimal solutions of linear
programming problems. Let R denote the objective function for the dual of the
linear programming model stated above. The dual objective function can be
written as follows:

(A10) R Su, + 3,

The saddlepoint property for optimal solutions of linear programming
problems states that

(All) R=R
Equation (A11) then implies the following relationship:
(A12) 3(Ew, D, - 2hin Zi] - 220, X, = Zu, + 3V,

For any region j, it is true from equation (A12) that:
(A13) 2w, D, - ShpZy - 30, X, = 4, + ¥,





